Tuesday 2 June 2015

Base Of Organic Chemistry

Brief History :

Jöns Jacob Berzelius, a physician by trade, first coined the term "organic chemistry" in 1807 for the study of compounds derived from biological sources. Up through the early 19th century, naturalists and scientists observed critical differences between compounds that were derived from living things and those that were not.


Chemists of the period noted that there seemed to be an essential yet inexplicable difference between the properties of the two different types of compounds. The vital force theory (sometimes called "vitalism") was therefore proposed (and widely accepted) as a way to explain these differences. Vitalism proposed that there was something called a "vital force" which existed within organic material but did not exist in any inorganic materials.

Synthesis of Urea

Friedrich Wöhler is widely regarded as a pioneer in organic chemistry as a result of his synthesizing of the biological compound urea (a component of urine in many animals) utilizing what is now called  "the Wöhler synthesis."

Wöhler mixed silver or lead cyanate with ammonium nitrate; this was supposed to yield ammonium cyanate as a result of an exchange reaction, according to Berzelius's dualism theory. Wöhler, however, discovered that the end product of this reaction is not ammonium cyanate (NH4OCN), an inorganic salt, but urea ((NH2)2CO), a biological compound. (Furthermore, heating ammonium cyanate turns it into urea.) Faced with this result, Berzelius had to concede that (NH2)2CO and NH4OCN were isomers. Until this discovery in the year 1828, it was widely believed by chemists that organic substances could only be formed under the influence of the "vital force" in the bodies of animals and plants. Wöhler's synthesis dramatically proved that view to be false.

Urea synthesis was a critical discovery for biochemists because it showed that a compound known to be produced in nature only by biological organisms could be produced in a laboratory under controlled conditions from inanimate matter. This "in vitro" synthesis of organic matter disproved the common theory (vitalism) about the vis vitalis, a transcendent "life force" needed for producing organic compounds.

Organic vs Inorganic Chemistry:

Although originally defined as the chemistry of biological molecules, organic chemistry has since been redefined to refer specifically to carbon compounds — even those with non-biological origin. Some carbon molecules are not considered organic, with carbon dioxide being the most well known and most common inorganic carbon compound, but such molecules are the exception and not the rule.

Organic chemistry focuses on carbon and following movement of the electrons in carbon chains and rings, and also how electrons are shared with other carbon atoms and heteroatoms. Organic chemistry is primarily concerned with the properties of covalent bonds and non-metallic elements, though ions and metals do play critical roles in some reactions.
The applications of organic chemistry are myriad, and include all sorts of plastics, dyes, flavorings, scents, detergents, explosives, fuels and many, many other products. Read the ingredient list for almost any kind of food that you eat — or even your shampoo bottle — and you will see the handiwork of organic chemists listed there.

Major Advances in the Field of Organic Chemistry:

Of course no description of a text should be without at least a mention of Antoine Laurent Lavoisier. The French chemist is often called the "Father of Modern Chemistry" and his place is first in any pantheon of great chemistry figures. Your general chemistry textbook should contain information on the specific work and discoveries of Lavoisier — they will not be repeated here because his discoveries did not relate directly to organic chemistry in particular.
Berzelius and Wöhler are discussed above, and their work was foundational to the specific field of organic chemistry. After those two, three more scientists are famed for independently proposing the elements of structural theory. Those chemists were August Kekulé, Archibald Couper and Alexander Butlerov.

Kekulé was a German, an architect by training, and he was perhaps the first to propose that the concept of isomerism was due to carbon's proclivity towards forming four bonds. Its ability to bond with up to four other atoms made it ideal for forming long chains of atoms in a single molecule, and also made it possible for the same number of atoms to be connected in an enormous variety of ways. Couper, a Scot, and Butlerov, a Russian, came to many of the same conclusions at the same time or just a short time after.

Through the nineteenth century and into the twentieth, experimental results brought to light much new knowledge about atoms, molecules and molecular bonding. In 1916 it was Gilbert Lewis of U.C. Berkeley who described covalent bonding largely as we know it today (electron-sharing). Nobel laureate Linus Pauling further developed Lewis' concepts by proposing resonance while he was at the California Institute of Technology. At about the same time, Sir Robert Robinson of Oxford University focused primarily on the electrons of atoms as the engines of molecular change. Sir Christopher Ingold of University College, London, organized what was known of organic chemical reactions by arranging them in schemes we now know of as mechanisms, in order to better understand the sequence of changes in a synthesis or reaction.

The field of organic chemistry is probably the most active and important field of chemistry at the moment, due to its extreme applicability to both biochemistry (especially in the pharmaceutical industry) and petrochemistry (especially in the energy industry). Organic chemistry has a relatively recent history, but it will have an enormously important future, affecting the lives of everyone around the world for many, many years to come.

Organic chemistry :-

Organic chemistry is a discipline within chemistry which involves the scientific study of the structure, properties, composition, reactions, and preparation (by synthesis or by other means) of hydrocarbons and their derivatives. These compounds may contain any number of other elements, including hydrogen, nitrogen, oxygen, the halogens as well as phosphorus, silicon and sulfur. Because of their unique properties, multi-carbon compounds exhibit extremely large variety and the range of application of organic compounds is enormous. They form the basis of, or are important constituents of many products (paints, plastics, food, explosives, drugs, petrochemicals, to name but a few) and (apart from a very few exceptions) they form the basis of all earthly life processes.

Organic chemistry, like all areas of science, evolves with particular waves of innovation. These innovations are motivated by practical considerations as well as theoretical innovations. The area is however underpinned financially by the very large applications in polymer science, pharmaceutical chemistry, and agrichemicals.

Properties :

Physical properties of organic compounds typically of interest include both quantitative and qualitative features. Quantitative information include melting point, boiling point, and index of refraction. Qualitative properties include odor, solubility, and color.
Melting and boiling properties

In contrast to many inorganic materials, typical organic compounds typically melt and boil. In earlier times, the melting point (m.p.) and boiling point (b.p.) provided crucial information on the purity and identity of organic compounds. The melting and boiling points correlate with the polarity of the molecules and their molecular weight. Some organic compounds, especially symmetrical ones, sublime, that is they evaporate without melting. A well known example of a sublimable organic compound is para-dichlorobenzene, the odiferous constituent of mothballs. Organic compounds are usually not very stable at temperatures above 300 °C, although some exceptions exist.

Color

Organic compounds are typically colorless or white. The situation is quite different for organic compounds that contain several adjacent multiple bonds. These compounds, where the double bonds are "conjugated" can be deeply colored. The biological pigments carotene and heme illustrate the relationship between "conjugation" and color. Impure organic compounds, as well as many biological materials, often are yellow or brownish owing to the presence of trace amounts of intensely colored impurities.

Solubility

Neutral organic compounds tend to be hydrophobic, that is they are less soluble in water than in organic solvents. Exceptions include organic compounds that contain ionizable groups as well as low molecular weight alcohols, amines, and carboxylic acids where hydrogen bonding occurs. Organic compounds tend to dissolve in organic solvents. Solvents can be either pure substances like ether or ethyl alcohol, or mixtures, such as the paraffinic solvents such as the various petroleum ethers and white spirits, or the range of pure or mixed aromatic solvents obtained from petroleum or tar fractions by physical separation or by chemical conversion. Solubility in the different solvents depends upon the solvent type and on the functional groups if present.

Solid state properties

Various specialized properties are of interest depending on applications, e.g. thermo-mechanical and electro-mechanical such as piezoelectricity, electrical conductivity (see organic metals), and electro-optical (e.g. non-linear optics) properties. For historical reasons, such properties are mainly the subjects of the areas of polymer science and materials science.

Toxicity :

Living matter including food, drugs are collections organic compounds, so the potential beneficial and harmful aspects of organic compounds span the entire range required for life to some of the most dangerous materials known. Indicative of the power of organic chemistry, the biomolecule called botulism toxin ("Botox") is lethal at the level of less than a microgram.

Nomenclature?:

The names of organic compounds are either systematic, following logically from a set of rules, or nonsystematic, following various traditions. Systematic nomenclature is stipulated by recommendations from IUPAC. Systematic nomenclature starts with the name for a parent structure within the molecule of interest. This parent name is then modified by prefixes, suffixes, and numbers to unambiguously convey the structure. Given that millions of organic compounds are known, rigorous use of systematic names can be cumbersome. Thus, IUPAC recommendations are more closely followed for simple compounds, but not complex molecules. To use the systematic naming, one must know the structures and names of the parent structures. Parent structures include unsubstituted hydrocarbons, heterocycles, and monofunctionalized derivatives thereof.

Nonsystematic nomenclature is simpler and unambiguous, at least to organic chemists. Nonsystematic names do not indicate the structure of the compound. Nonsystematic names are common for complex molecules, which includes most natural products. Thus, the informally named lysergic acid diethylamide is systematically named (6aR, 9R)-N, N-diethyl-7-methyl-4, 6, 6a, 7, 8, 9-hexahydroindolo-[4, 3-fg] quinoline-9-carboxamide.
With the increased use of computing, other naming methods have evolved that are intended to be interpreted by machines. Two popular formats are SMILES and InChI.

Structural drawings :

Organic molecules are described more commonly by drawings or structural formulas, combinations of drawings and chemical symbols. The line-angle formula is simple and unambiguous. In this system, the endpoints and intersections of each line represent one carbon, and hydrogen atoms can either be notated explicitly or assumed to be present as implied by tetravalent carbon. The depiction of organic compounds with drawings is greatly simplified by the fact that carbon in almost all organic compounds has four bonds, oxygen two, hydrogen one, and nitrogen three.

Arrhenius Definition: Hydroxide and Hydronium Ions:

The first and earliest definition of acids and bases was proposed in the 1800's by Swedish scientist Svante Arrhenius, who said that an acid was anything that dissolved in water to yield H+ ions (like stomach acid HCl, hydrochloric acid), and a base was anything that dissolved in water to give up OH- ions (like soda lye NaOH, sodium hydroxide). Acids and bases were already widely used in various occupations and activities of the time, so Arrhenius' definition merely attempted to explained well-known and long-observed phenomenon.

Although simple, at the time this definition of the two types of substances was significant. It allowed chemists to explain certain reactions as ion chemistry, and it also expanded the ability of scientists of the time to predict certain chemical reactions. The definition left a great deal wanting, however, in that many types of reactions that did not involve hydroxide or hydronium ions directly remained unexplained.

Many general chemistry classes (especially in the lower grades or introductory levels) still use this simple definition of acids and bases today, but modern organic chemists make further distinctions between acids and bases than the distinctions provided under Arrhenius's definition.

0 comments:

  © Blogger template 'Ultimatum' by Ourblogtemplates.com 2008

Back to TOP